من اول: داری، نام سازه کی معنی رنامتین سازه ک

ا- معلى السمة تعيين درج نابعين سازه هاي :

J-:

$$N = 3k + r - (c + 3) = 8$$

d=:

$$n = 3k + r - (c + 3) = 4$$
 $3 = 6 = 8$

J- :

$$N = 3K + Y - (C + 3) = 6$$

 $\frac{1}{4}$

ق حل بررش در ۲ كا به رافنونده رهاية شرج به درج ناسي افعانه ي الم

+ 981 - 3 C = 2

n=3K+r-(C+3)=1+1=2

$$N = 3K + Y - (C + 3) = 17$$

المة: درموارد درجود فنرسهش دراهی، درعفنوی ا کد فند عم درتبط کرده دست را منعیا برلدلر وصل کرده و فنرسهش داهای راحزن کند اسس بعبورت محمول ، عمل کنید

$$n = 3K + Y - (C+3) = 2$$

一ついいいいい

$$\frac{1}{\sqrt{1}} = \frac{1}{\sqrt{1}} = \frac{1$$

Ninow RII Vibrallater Julia

t b f d

ملوب کت تسریخ یا دوبرد.

خن برکت

د درت کرده ما بردی فیول درم ، اذاردی مص اردی بو) مناسلی بالد

همیش نی قال هیچ بری دیجا مرکود که معنی واقع خاند در واقع در استان الحق می در آن المحق ال الحق الحداد می المورد و المورد

		•	
عفو	F.	f	F=F.+Xf
	wxx	-·/Y•Y	۲,-۲
cb	17.5°	/٧.٧	- 20-9
cd	-1728	-/14	1,44
af		-/^*/	1,44
fe	0	- ·/VIY	-1,21
eb	U	}	-1,91
ed	-F, YX	-119	1
ad	۵,۳۴	- 0/717	4/11
db	-1,2	1/197	1,94
ba	1,2	/٢۵	1/17

 $F_{bd} = (F_{bd} + X f_{bd})$ $F_{bd} = (F_{bd} + X f_{bd})$ $F_{bd} = (F_{bd} + X f_{bd})$ $= (Y_{bd} + X f_{bd}) = (Y_{bd} + X f_{bd})$ $= (Y_{bd}$

مطول دارت تسل غرفال دريردم دوي ماكركى روه کی کوه حرار بسر ال به دوکی کوهان ک سی الد. اما زنس دوکی ماکرکی واز بادی دوی عب حری باید. منظو دین دیمت که در آسی ، به تو این کا بورک و موک

$$a \not \xrightarrow{X_{1}} \xrightarrow{X_{t}} X_{t}$$

$$\begin{cases} \sum_{x=0}^{n} \Rightarrow X_{r} + X_{f} \cos \alpha + X_{q} = 0 \\ \sum_{x=0}^{n} \Rightarrow X_{f} \sin \alpha + X_{1} = 0 \end{cases}$$

$$\begin{cases} \sum F_{x} = 0 \implies -X_{f} \cos x + X_{5} \cos \beta + \delta = 0 \\ \sum F_{y} = 0 \implies -X_{f} \sin x - X_{5} \sin \beta = 0 \end{cases}$$

$$\begin{cases} \sum F_{n} = \cdot \Rightarrow -X_{q} - X_{\omega} \cos \beta = \cdot \\ \sum F_{y} = \cdot \Rightarrow X_{p} + X_{\omega} \sin \beta = \cdot \end{cases}$$

حل هر ۱ عادام دا درس برك توك توادل دهم.

 $[A] \qquad \{x\} = \{B\}$ $[A]^{-1}[A] + \{x\} = [A]^{-1}[B]$ $\Rightarrow \{x\} = [A]^{-1}\{B\}$

(در کاری که دالهاد فردهای داخل درس آمد. ۱۵۶دی میک فرن کار ماهی کریکوکی او ۱۸ را فخوس عاظم الر ٠= (A) خ ما ما ما ما الراكمات.

$$\begin{array}{lll}
\bigoplus_{k=0}^{A} & \bigoplus_{k=0$$

+ [3(90)] (45) - 149 (40) =0 0K.

$$\sum MB = 0 \rightarrow -Ay(10) + (20x16)(5) + (\frac{1}{2}x20x16)(\frac{16}{3}-3) = 0$$

$$Ay = (97.33 \text{ KN } \uparrow)$$

قا بوق ار بدو قسمت تحیانی و فیوانی تعدیم می کنیم و نیرد صا داهی در میل منصل حاک م و رای ما بهم

ارما؛ روابط بقادل برا قسمت Ac :

$$\begin{array}{cccc}
& \bigoplus_{X \in \mathcal{A}} Ac & \longrightarrow & -A_{\mathcal{K}} + 62.5 = 0 & \longrightarrow & A_{\mathcal{K}} = 62.5 \text{ KN} \\
& \bigoplus_{X \in \mathcal{A}} Ac & \longrightarrow & A_{\mathcal{K}} = 62.5 \text{ KN} \\
& \bigoplus_{X \in \mathcal{A}} Ac & \longrightarrow & A_{\mathcal{K}} = 62.5 \text{ KN} \\
& \bigoplus_{X \in \mathcal{A}} Ac & \longrightarrow & M_{\mathcal{A}} = 62.5 \text{ (3)} = 0 & \longrightarrow & M_{\mathcal{A}} = 187.5 \text{ KN.m}
\end{array}$$

$$\begin{array}{lll}
\bigoplus_{x \in A} \sum_{y \in A} \sum_{z \in$$

$$S_{C} = S_{C} - S_{A} = S_{C} = \frac{A_{M}^{(A_{C})}}{E_{I}} \cdot \Re = \left[\frac{1}{3}(4.8)\left(\frac{172.8}{E_{I}}\right)\right] \left(\frac{3}{4}\times4.8 + 2.4\right) = \frac{1658.88}{E_{I}}$$

$$= \frac{1658.88 \times (10^{3})(10^{3})^{3}}{(70 \times 10^{3})(3.91 \times 10^{8})} = 60.60 \text{ mm}$$

$$S_{c} = S_{B} + \Theta_{B} \times 2.4$$

$$= 36.36 + (0.0101 \times 2.4 \times 10)$$

$$= 36.36 + 24.24$$

$$= 60.60 \text{ mm}$$

$$\frac{1}{2}(625)(5)(\frac{10}{3}) = \frac{80208.33}{61} \times 0.00^{3}$$

$$\frac{1}{2}(625)(\frac{10}{3}) = \frac{80208.33}{61} \times 0.00^{3}$$

$$\frac{1}{2}(625)(\frac{10}{3}) = \frac{80208.33}{61} \times 0.00^{3}$$

$$\frac{1}{2}(625)(\frac{10}{3}) = \frac{80208.33}{61} \times 0.00^{3}$$

$$Z_{b} \bigcirc_{A} = \frac{8D/A}{L} = \frac{80208.33}{20} = \frac{4010.42}{EI}$$

فرض لنسر حراش تغییر مهان درنقه ای شان ۱۸ رخ دهم و فاصد ای نقط ما معلی برایر به وی

$$\Theta_{M/A} = \frac{A_{m}}{EI} = \frac{1}{EI} \left[\frac{1}{2} (875)(5) + \frac{1}{2} (875 - 1259x_{M})9x_{M} \right]$$

$$\Theta_{M/A} = \Theta_{M} - \Theta_{A} = \Theta_{A} = \frac{401042}{EI}$$

Scanned by CamScanner

$$\sum_{\text{max}} = \sum_{\text{MIA}} = \frac{1}{EI} \left[\frac{1}{2} (875)(5)(\frac{10}{3}) + (381.875)(4.45)(\frac{4.45}{2} + 5) \right] + \frac{1}{2} (55.625)(4.45)(\frac{4.45}{3} + 5) \right] = \frac{20371.84}{EI} \times 10^{3} \times 10^{3} \times 10^{3} \times 10^{3} \times 10^{6} \times 10^{6}$$

M- valen me, venigo ista B. A (Elmin Jun

$$\Theta_{B} = \Theta_{B/A} = \frac{A_{H}^{(AB)}}{EI} = \frac{1}{EI} \left[\left(\frac{2445 + 547.5}{2} \right) (3.6) \right] = \frac{538.5}{EI} = \frac{538.5 \times (10^{3}) (10^{3})^{2}}{(200 \times 10^{3}) (2.34410^{4})} = 0.0115$$

$$S_{B} = \frac{A_{M}^{(AB)}}{E_{L}} \cdot \bar{x} = \frac{1}{E_{L}} \left[(547.5)(3.6)(1.8) + \frac{1}{2}(1847.5)(3.6)(2.4) \right] = \frac{11745}{E_{L}} \times \frac{11745}{(2004.10^{3})(2.344.10^{9})} = 25.1 \text{ mm}$$

$$S_{c} = S_{c/A} = \frac{A_{N}^{(Ac)}}{E_{I}} \cdot \tilde{\chi} = \frac{1}{E_{I}} \left[SY1.5(3.6)(5.4) + \frac{1}{2}(1297.5)(3.6)(6) + \frac{1}{2}(547.5)(3.6)(2.4) \right]$$

$$= \frac{33501.6}{E_{I}} \cdot \tilde{\chi} = \frac{1}{E_{I}} \left[\frac{1}{2} (SY7.5)(3.6)(2.4) + (375)(3.6)(5.4) + \frac{1}{2} (172.5)(3.6)(4.8) \right]$$

$$= \frac{11145.6}{E_{I}} \cdot \tilde{\chi} = \frac{1}{E_{I}} \left[\frac{1}{2} (SY7.5)(3.6)(2.4) + (375)(3.6)(5.4) + \frac{1}{2} (172.5)(3.6)(4.8) \right]$$

$$= \frac{11145.6}{E_{I}} \cdot \tilde{\chi} = \frac{33501.6 + 11145.6}{E_{I}} = \frac{6201}{E_{I}} \cdot \frac{660.5}{E_{I}} \cdot \tilde{\chi} = \frac{4540.5}{E_{I}} \cdot \frac{1}{2} (172.5)(3.6)(1.8)$$

$$D_{c} = \frac{1}{E_{I}} \left[\frac{(377.5 + 375)}{2} (3.6) \right] = \frac{1660.5}{E_{I}} \cdot \tilde{\chi} = \frac{4540.5}{E_{I}} \cdot \frac{1}{2} (172.5)(3.6)(1.2) \right] = \frac{7802.6}{E_{I}} \cdot \tilde{\chi} = \frac{1}{E_{I}} \left[\frac{(375)(3.6)(1.8) + \frac{1}{2} (172.5)(3.6)(1.2)}{E_{I}} \right] = \frac{2802.6}{E_{I}} \cdot \tilde{\chi} = \frac{19521}{E_{I}} \cdot \tilde{\chi} = \frac{1}{E_{I}} \left[\frac{(375)(3.6)(1.8) + \frac{1}{2} (172.5)(3.6)(1.2)}{E_{I}} \right] = \frac{19521}{E_{I}} \cdot \tilde{\chi} = \frac$$

 $\sum_{D} = \frac{19521 \times (10^3) \times (10^3)^3}{(200 \times 10^3)(2.34 \times 10^9)} = 41.71 \text{ mm}$

برال من مرس له تروال عدر ما مار الدول العوال العوال العراد :

عفو	l	F	f	Se = Fl	Se = la DT	810	8 = 80 + 80 + 80 C	fs
Ьс	٨	٨٠		48./EA	. 6		98./EA	
cd	4	ır.	·/Y&	VI./EA	•		YY-/ EA	28./EA
ad .	Л	A•	1	48./ EA	٤٨٠ ط		96./ EA + EA. dT	45: + EV-41
ab	. ۲	•	•		•	- <u>/à</u> Ir		En '
ac	1.	-1	-412	-1/EA	- E at		"	-1,75 (-1···/EA
	<u> </u>	1.				ır	'th ' 11	-1.04-17)

$$\begin{split} W_{R} + I_{X} \Delta &= \sum f \delta + .740 \frac{1}{11} - I_{X} \frac{18}{11} + 740 \times 1.4 \Delta_{C_{X}} = \frac{181^{\circ}}{E10} + 9.4 \cdot \alpha_{T} + \frac{.7440}{11} \Rightarrow 0_{C_{X}} \\ \phi_{1} &= \sum f \delta_{1} \int_{C_{X}} \frac{1}{11} \int_{C_{X}} \frac{1}{11}$$

ges	l	F	0F/0P	F(%P) & (P=+).
bc	٨	٨.	•	o
cd	4	14.4 VAD b	-/YD	۵٤٠
ad	λ	1.+P	1	48.
ab	4	0	•	•
ac	1.	-11/19 P	-1,12	149 •
J			Σ	. 14" .

$$\Delta_{Cx} = \frac{1}{FA} \sum_{P} F(\frac{\partial^{F}}{\partial P}) \ell$$

$$= \frac{r \xi r}{FA}$$

$$= \frac{r \xi r}{FA}$$

$$\int_{Cx} F(\frac{\partial^{F}}{\partial P}) \ell$$

رتس تود:

ز مرکزنر. نزم کنم.

۱- أكود تعاديم F دوس كالتعليم بو محدار دامى ج تراريم و عن الماد F دوس كا دكازى ديمت . ۲- تعاديم ع ه⁰⁵ دوس كا تتعان و دفيق عمان كه دوس كاركازى ديمت . اين مت مدرس فيمتى برخ بر ترارد است فيمي على المركازى ديمت .

مدور دمت مار مرق المت الدوائه و عن درتم دوبرد.

ق در در در در در در در المراق المراق

برای سر ۳ مسل (اصلی دود بازی) مقط دهت باید کرن باکد، که در مند بازی ۱ ت ان داده محده داکمت در کهت در می در می شکول ۱۲ مر ۱۳ مه ۱۳ ما برای سر ۳ مقط بران کرده بداست می آدیم . نتیج در جودل زر دنده تی کوده .

تتطو	• مردا	7715	EI	М	m ₁	my	M m ₁	Hmr
ad	а	3- ه	FI	-1Y X	1/1 x	- x	-1772(1112)	-11/V x k
db	a ;	٤-1.	F.J	-13xx+EA.	1-•/1 X	-x	(-KBXx+fx-)(1-112)	-x(-K91x+F1.)
- 6	2			-10xr	O	÷.X	0	rdar

تط	יענ '	שעע	EI	- т	m,	mr	Hm,	Mmr
ab	a .	۵۵	EI	-Y, Y 2 + Y. 2	1-1/12	-/rx	(-1/12+4-2)(1-112)	·/٣2 (-٧,٢ 2, ^٢ +٧·2)
Pg	С	۲- ٤٠	YEI	1,02+19.	一人な	<u>~</u> ~	1x(1,2x+14.)	
dc	C	•-Y	YEI	አ የ ያ አ	, 보	デス	(x6,7x) x 4.	<u> </u>

$$\frac{1 \times \theta_{\alpha}}{\alpha} = \int \frac{M m_{1}}{EI} dx = \frac{1}{EI} \left(\int (-V/Y x'_{1} V \cdot x) (1 - 1/1x) dx + \frac{1}{Y} \int \frac{1}{A} \chi(Y/\omega) \chi + 19 - 1 \right) dx
+ \frac{1}{Y} \int \frac{1}{A} \chi(\lambda Y/\omega) dx = \frac{\Sigma Y Y/\omega}{EI}$$

ت بطن علم براى كول Mmr خلاهم والمت:

٠ ان ان ا

تطعه	l(in)	A(int)	F	f	F\$ P/A	بزا	קננ	I	М	m	Mm
ьd	14.14				٤٨√٢		_	_		-	_
bc	· 14•	14	•.	•	•	С			-1-2		1. x1
ab	17-	14	-4.	-1	٣٤٢٦٨٩	С	1445.	٤	1.7-14.	x-14.	(1-7-14-)(7-14-)

$$1 \times \frac{\Delta}{cy} = \frac{1}{E} \left(o + \int \frac{1 \cdot x^{r}}{f \cdot dx} dx + \int \frac{(1 - x - Yf \cdot ..)(x - Yf \cdot ..)}{f \cdot ..} dx + \xi \lambda ... \sqrt{r} + \cdot + \forall \xi Y / \lambda Y \right) = 1, Y \xi \text{ in}$$

ی درنم در از خی بنون به سخود کودن نیموری قوری ظمری، دارد این ساله نسخود کند داری آورای قوری تروافرف کیم بایو در صور ل در بطر عام و طاه مقادیم F و فرارد کرو د در این این کود فود ۱۸۲۲ بایدانی می ای بالا حرف کود کر در صور را جواب ۱٫۲۲ جواهواید در اخوات ماجم و برک بنی در این فرقی ادا تو بردی قوری دو درخوی میرمی خواجم دد میراهید را نیکی قوری فقط در الحار جمتی در ۵۵ منظی برگی در برگی در المای میرمی فواجم دد ا

الم المرف كرد الم) دس ما في على على على المرف كرد الم) كذال و كس . المرف كرد الم) كذال و كس .

$$\begin{cases} \Delta_{i+} R_{i} D_{ii} + R_{r} D_{ir} = -\frac{i}{i} \int_{i}^{n} dx & \text{ix} \Delta_{i} = \int_{i}^{n} \frac{M_{i} m_{i}}{EI} dx & \text{ix} \Delta_{ij} = \int_{i}^{n} \frac{m_{i} m_{j}}{EI} dx \\ \Delta_{r} + R_{i} D_{ri} + R_{r} D_{rr} = -\frac{i}{i} \int_{i}^{n} R_{c} \int_{i}^{n} dx & \text{ix} \Delta_{i} = \int_{i}^{n} \frac{M_{i} m_{i}}{EI} dx & \text{ix} \Delta_{ij} = \int_{i}^{n} \frac{m_{i} m_{j}}{EI} dx \end{cases}$$

$$(\Delta_{r}, \Delta_{i}, \Delta_{i}$$

درسالد ۱۲ ستادی که مرد می مردی کارجازی بوکست کورواند ، اداعان حدول وادود کا شورکود و مرکزن m, m, m, m, ابولی می سال می این می سال می این می ای

تقلع	مبرا	מנק		мı	mr	M.m,	M.m _r	m, r	יו מו יעו	m _r
ad		3-0	-1V V X	1-1/12	χ	-1742(1-1/12)	-IVAX ^r	(1-·/la) ^r	ス(1-・/1%)	αr
db-	a	£-1.	-የዓለ-ኢ+ ሂለ •	1-1/12-	~~~ X	(-Y9/x2+EA+)(11/2)	ፈ(-ነ ዓለ _{ጃ+} {ኢ.)	(1//x) ^t	ズ(1-/11)	χr
bc	С)-	-rdzr	0	χ	. 0	-r2x ^r	0	۰	r ^r

 $D_{II} = D_{II} = \int \frac{m_{I}m_{I}}{EI} dx = \frac{1}{EI} \left(\int x(1-1/x) dx + \int x(1-1/x) dx + \int dx \right) = \frac{1.199}{EI}$ $D_{II} = \int \frac{m_{I}m_{I}}{EI} dx = \frac{1}{EI} \left(\int x(1-1/x) dx + \int x(1-1/x) dx + \int dx \right) = \frac{\omega}{rEI}$ $D_{II} = \int \frac{m_{I}}{EI} dx = \frac{1}{rEI}; \quad D_{IY} = \int \frac{m_{I}}{EI} dx = \frac{r...}{rEI} \left(\int x(1-1/x) dx + \int dx \right) = \frac{\omega}{rEI}$ $\frac{1}{rEI} \begin{bmatrix} 1. & \omega \\ \delta . & r... \end{bmatrix} \begin{bmatrix} R_{I} \\ R_{I} \end{bmatrix} = \frac{1}{rEI} \begin{bmatrix} 1. & 1.199 \\ fivrf . \end{bmatrix} \Rightarrow X - \begin{bmatrix} R_{I} \\ R_{I} \end{bmatrix} = \int \frac{1}{B} = \begin{bmatrix} -r/y, r \\ r.9, r \end{bmatrix}$ $\frac{1}{rEI} \begin{bmatrix} 1. & \omega \\ \delta . & r... \end{bmatrix} \begin{bmatrix} R_{I} \\ R_{I} \end{bmatrix} = \frac{1}{rEI} \begin{bmatrix} 1. & 1.199 \\ fivrf . \end{bmatrix} \Rightarrow X - \begin{bmatrix} R_{I} \\ R_{I} \end{bmatrix} = \int \frac{1}{B} = \begin{bmatrix} -r/y, r \\ r.9, r \end{bmatrix}$ $\frac{1}{rEI} \begin{bmatrix} 1. & \omega \\ \delta . & r... \end{bmatrix} \begin{bmatrix} R_{I} \\ R_{I} \end{bmatrix} = \frac{1}{rEI} \begin{bmatrix} 1. & 1.199 \\ fivrf . \end{bmatrix} \Rightarrow X - \begin{bmatrix} R_{I} \\ R_{I} \end{bmatrix} = \int \frac{1}{B} = \begin{bmatrix} -r/y, r \\ r.9, r \end{bmatrix}$ $\frac{1}{rEI} \begin{bmatrix} 1. & \omega \\ \delta . & r... \end{bmatrix} \begin{bmatrix} R_{I} \\ R_{I} \end{bmatrix} = \frac{1}{rEI} \begin{bmatrix} 1. & 1.199 \\ fivrf . \end{bmatrix} \Rightarrow X - \begin{bmatrix} R_{I} \\ R_{I} \end{bmatrix} = \int \frac{1}{R_{I}} \begin{bmatrix} 1. & 1.199 \\ R_{I} \end{bmatrix} = \int \frac{1}{R_{I}} \begin{bmatrix} 1. & 1.199 \\ R_{I} \end{bmatrix} = \int \frac{1}{R_{I}} \begin{bmatrix} 1. & 1.199 \\ R_{I} \end{bmatrix} = \int \frac{1}{R_{I}} \begin{bmatrix} 1. & 1.199 \\ R_{I} \end{bmatrix} = \int \frac{1}{R_{I}} \begin{bmatrix} 1. & 1.199 \\ R_{I} \end{bmatrix} = \int \frac{1}{R_{I}} \begin{bmatrix} 1. & 1.199 \\ R_{I} \end{bmatrix} = \int \frac{1}{R_{I}} \begin{bmatrix} 1. & 1.199 \\ R_{I} \end{bmatrix} = \int \frac{1}{R_{I}} \begin{bmatrix} 1. & 1.199 \\ R_{I} \end{bmatrix} = \int \frac{1}{R_{I}} \begin{bmatrix} 1. & 1.199 \\ R_{I} \end{bmatrix} = \int \frac{1}{R_{I}} \begin{bmatrix} 1. & 1.199 \\ R_{I} \end{bmatrix} = \int \frac{1}{R_{I}} \begin{bmatrix} 1. & 1.199 \\ R_{I} \end{bmatrix} = \int \frac{1}{R_{I}} \begin{bmatrix} 1. & 1.199 \\ R_{I} \end{bmatrix} = \int \frac{1}{R_{I}} \begin{bmatrix} 1. & 1.199 \\ R_{I} \end{bmatrix} = \int \frac{1}{R_{I}} \begin{bmatrix} 1. & 1.199 \\ R_{I} \end{bmatrix} = \int \frac{1}{R_{I}} \begin{bmatrix} 1. & 1.199 \\ R_{I} \end{bmatrix} = \int \frac{1}{R_{I}} \begin{bmatrix} 1. & 1.199 \\ R_{I} \end{bmatrix} = \int \frac{1}{R_{I}} \begin{bmatrix} 1. & 1.199 \\ R_{I} \end{bmatrix} = \int \frac{1}{R_{I}} \begin{bmatrix} 1. & 1.199 \\ R_{I} \end{bmatrix} = \int \frac{1}{R_{I}} \begin{bmatrix} 1. & 1.199 \\ R_{I} \end{bmatrix} = \int \frac{1}{R_{I}} \begin{bmatrix} 1. & 1.199 \\ R_{I} \end{bmatrix} = \int \frac{1}{R_{I}} \begin{bmatrix} 1. & 1.199 \\ R_{I} \end{bmatrix} = \int \frac{1}{R_{I}} \begin{bmatrix} 1. & 1.199 \\ R_{I} \end{bmatrix} = \int \frac{1}{R_{I}} \begin{bmatrix} 1. & 1.199 \\ R_{I} \end{bmatrix} = \int \frac{1}{R_{I}} \begin{bmatrix} 1. & 1.199 \\ R_{I} \end{bmatrix} = \int \frac{1}{R_{I}} \begin{bmatrix} 1. & 1.199 \\ R_{I} \end{bmatrix} = \int \frac{1}{R_{I}} \begin{bmatrix} 1. & 1.199 \\ R_{I} \end{bmatrix} = \int \frac{1}{R_{I}} \begin{bmatrix} 1. & 1.199 \\ R_{I} \end{bmatrix} = \int \frac{1}{R_{I}} \begin{bmatrix} 1. & 1.199 \\ R_{I} \end{bmatrix} = \int \frac{1}{R_{I}} \begin{bmatrix} 1. & 1.199 \\ R_{I} \end{bmatrix} = \int \frac{1}{R_{I$

مادر در ای مارج بالی تودگرد c مردی کا معیانی

۱=٠١۵ in ، E=٢٩x١٠ ٢5i

ررد ٢٠٠٥ نار ٢٢ بر ١ و و تراد و دو از كالبال ٢٥٤ تنور و كود.

$$\Delta_{cy} = \sum_{e} \frac{F(\sqrt[3]{op})}{ER} I = \frac{1}{ER} \sum_{e} F(\sqrt[3]{op}) I$$

$$= \frac{Yf''/\partial}{ER} = \frac{Yf''/\partial x IY}{Y9x1.^{7}x.^{7}\partial} = -/Y. \Sigma \text{ in}$$

Here

jes	l	F	OF/OP	F(0/0p) ((P=E)
ab	1-	1566b+1,441	-/ rr r	117,171
bc	1-	1440 P+ 4 FFF	144V	14,4V
c_d	1-	799VP+4777	144V	14,44
dc	12,12	- (./925° P+1, AA4)	1981	VD18V _
ef	1-	-(1888p + 4,44V)	/٢٢-٢	117,17
fa	18/18	= (1/tv1 p + 1/vvx)	-·/EVI	rv,v-
bf	1-	1566 b+ 1286	-1777	17,77
be	12,12	11VIP+ 1,119	1211	U
ce	1.	P		٤.

אני בו בים A בים בול בוני ב אפני ישניני עיל בוניינל נוש לפני * נוצני ויק ת נוטרה * SEIL 3= P citalite * مون حواب مستركي وكل في ويالى عرى كود C عرب الإلى الدين ای کر. ۱۲۰۶in میک ماشن فی الد.

* از ترار بورسرد ملاح بالى افتى كه C عام برد ب ر ۱ دردن که تعرت دیر وکراداد. عاب رادر الدراي الم

طور دارس عال فرداس درار C مردار کا معمالن $\Delta = \int \frac{H(\partial H/\partial P)}{EI} dx, \quad \theta = \int \frac{H(\partial H/\partial T)}{EI} dx$ $\mathsf{M} \not = \mathsf{M} = \mathsf{M}$ $M_{\text{M}} = -\frac{1}{2} \text{ IM}_{\text{M}} = -\frac{1}{2} \text{ M} + \frac{1}{2} \text{ M} = -\frac{1}{2}; \quad \frac{1$ $\Delta_{cy} = \int_{cy}^{\infty} \frac{(-r \cdot x)(-x)}{\varepsilon_{I}} \frac{dx}{dx} + \int_{cy}^{\infty} \frac{(-r \cdot x)(-x)}{r\varepsilon_{I}} \frac{dx}{\varepsilon_{I}} = \frac{r \cdot x \cdot x}{\varepsilon_{I}}$ $\Delta_{cy} = \int_{cy}^{\infty} \frac{(-r \cdot x)(-x) dx}{Fr} + \int_{cy}^{\infty} \frac{(r \cdot x - r \cdot x)(x - r \cdot y)}{r \cdot Fr} d\vec{x} = \frac{r \cdot y \cdot 3}{Fr}$ $M(10)T \qquad \Sigma M = 0 \Rightarrow Y \cdot \chi_{+} T_{+} M = 0 \Rightarrow M = -Y \cdot \chi_{-} T; \frac{\partial M}{\partial T} = -1$ $M(10)T \qquad \Sigma M = 0 \Rightarrow M = -Y \cdot \chi_{-} T; \frac{\partial M}{\partial T} = -1; \Delta \langle \chi \langle 1 \rangle$ $\theta_{c} = \int_{-\varepsilon}^{\infty} \frac{(-Y \cdot x - \cdot)(-1)^{x}}{\varepsilon_{I}} dx + \int_{-\varepsilon}^{\varepsilon} \frac{(-Y \cdot x - \cdot)(-1)}{Y \varepsilon_{I}} dx = \frac{4Y \delta}{\varepsilon_{I}}$ روس درم: ح وكان تهما بالروس عرفر دعم ليس واعاسر اد. $\underset{\mathsf{H}}{\underbrace{\mathsf{A}}} \underbrace{\mathsf{A}}_{\mathsf{A}} \underbrace$ bc: M = -bx - 1 $\Delta_{CH} = \int \frac{M(OH/OP)}{FT} dx = \frac{VVJ}{ET} \quad (P=r, T=.)$ $\theta_{c} = \int \frac{M(\partial M/\partial T)}{FT} dx = \frac{970}{EI} \quad (P=1., T=0)$ دسورتورى س تركى دى الله ورك وركا مل المعادستان درك ورل تواري و دامادرا تجاع ن من على ما ما رح دورد سوری به سکار مودل تواهیم دالمت ، جودل نقط مهای این ایک که عات رست دید اود.

در تور ما المارية من المريد ال E=19 x1. Ksi I = 9 .. in ? ; A = 1. in ? كرد أن دكت دركاه في بور دني ركود وافورت ولاكم قرنداد. IM= = = M= P COSY X $M = -12 \text{ pa}; \frac{2M}{99} = -12 \text{ a}$ $\sqrt{3} \times \sqrt{3} = -12 \text{ a}$ $\Delta_{cy} = \int \frac{(r \cdot x)(\cdot / \xi x)}{\xi I} dx + \int \frac{(r \cdot x)(\cdot / \xi x)}{\cdot \cdot \cdot \cdot} dx = \frac{r \cdot \cdot \cdot}{r \cdot (\frac{r \cdot x}{15 \cdot c})} = \cdot / \cdot \cdot \otimes H$ th=1b صِ فِيهِ فِرَاهِم كَرْرِها والقورِلَ (في قوري (فياك اللهم وور مورك. $\Sigma M_{\widehat{0}} = \rightarrow M = \frac{P}{r} \times$ 1 P OMOP = x ; 3 x x & E $\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} = \frac{1$ $\Delta_{\text{cy}} = \int \frac{H \frac{\partial H}{\partial P}}{\text{FT}} dl + \sum_{n=1}^{\infty} \frac{F\left(\frac{\partial F}{\partial P}\right)}{\text{En}} L \qquad \text{(10)}$ برای تطعہ مای نو ۲۰ - ۴= ۱۴۰ م ۲۲ میں سرس در سرتی د برای تطعہ مای نو ۱۴۰ م ۶۴ میں میں سرس در سرتی د $\Delta_{cy} = \frac{V \cdot \cdot \circ}{\Gamma E I} + \frac{(-10)(-.7\Gamma)(D)}{E A} + \frac{10 \times .7\Gamma \times D}{E A} = \frac{V \cdot \cdot \circ}{\Gamma E I} + \frac{ED}{E A} = \frac{1.0917 + .1.092 \text{ in}}{E A}$ $\frac{ED}{E A} = \frac{V \cdot \circ \circ}{\Gamma E I} + \frac{ED}{E A} = \frac{V \cdot \circ \circ}{\Gamma E I} + \frac{ED}{E A} = \frac{1.0917 + .1.092 \text{ in}}{\Gamma E I}$ $\frac{(-10)(-.7\Gamma)(D)}{(-10)(D)} + \frac{10 \times .7\Gamma \times D}{E A} = \frac{V \cdot \circ \circ}{\Gamma E I} + \frac{ED}{E A} = \frac{1.0917 + .1.092 \text{ in}}{\Gamma E I}$ $\frac{(-10)(-.7\Gamma)(D)}{(-10)(D)} + \frac{10 \times .7\Gamma \times D}{E A} = \frac{V \cdot \circ \circ}{\Gamma E I} + \frac{ED}{E A} = \frac{1.0917 + .1.092 \text{ in}}{\Gamma E I}$ $\frac{(-10)(-.7\Gamma)(D)}{(-.7\Gamma)(D)} + \frac{10 \times .7\Gamma \times D}{E A} = \frac{V \cdot \circ \circ}{\Gamma E I} + \frac{ED}{E A} = \frac{1.0917 + .1.092 \text{ in}}{\Gamma E I}$

· And Andrews	
ان ایزا رسیمند. (دسی کو که در ۱۳ در ناصی ارکدس	س ازنسوناب دوبرد بردش مازه در تنم تراس میلی در بردای
VEN VEH	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$)+R _r (m _r)+R ₍ m _r
A KN	D_{n} D_{n} D_{n} D_{n}
$\int_{B_{1}}^{A_{1}} \int_{B_{1}}^{A_{1}} \int_{B_{1}}^{A_{1}} \int_{B_{1}}^{A_{2}} \int_{B_{1}}^$	$ \begin{bmatrix} D_{1r} & D_{1r} \\ D_{1r} & D_{1r} \end{bmatrix} \begin{bmatrix} R_1 \\ R_2 \end{bmatrix} = -\begin{bmatrix} \Delta_1 \\ \Delta_2 \end{bmatrix} \begin{bmatrix} R_1 = R_{bx} \end{bmatrix} $
$ \int_{D_{1}}^{D_{2}} \int_{D_{1}}^{D_{2}} \int_{D_{1}}^{D_{2}} \left\{ \begin{array}{c} \Delta_{1} + R_{1} D_{11} + R_{2} D_{12} + R_{2} D_{12} = \bullet \\ \Delta_{2} + R_{1} D_{21} + R_{2} D_{21} + R_{2} D_{22} = \bullet \end{array} \right. \left\{ \begin{array}{c} D_{11} \\ D_{21} \\ D_{22} \end{array} \right. $	$D_{rr} D_{rr} $ $\begin{cases} P_r \\ P_r \end{cases} $ $\begin{cases} P_r \\ P_r \end{cases} $ $\begin{cases} P_r = H_b \\ P_r = H_b \end{cases}$
$\int O_i = \int \frac{M.m_i}{EI} dx ; D_{ij} = \int \frac{m_i m_j}{EI} dx$,
ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا	M=M.+ I Rimi Wish Dir, sir is
ad a 8 EI - EA X A -1	1,27-1,3 x
de d 0-9 rei 12-2	1,142-1,20
ec c •-r rei • . £ x -1	-1,2x+1,2V
$\Delta_{r} = \int \frac{H.m_{r}}{EI} dx = \frac{1}{EI} \left(\int_{0}^{E} \frac{-E \lambda x \lambda}{I} dx + \int_{0}^{E} \frac{A \lambda x \lambda}{I} dx + \int_{0}^{E} \frac{A \lambda x \lambda}{I} dx \right)$	$\frac{(x-\xi\lambda)(\lambda-x)}{r}dx+\int_{0}^{\infty}\frac{xx}{r}dx+\int_{0}^{\infty}\frac{x\cdot}{t}dx)=\frac{-199\lambda}{EI}$
Ly $D_{ir} = \int \frac{m_i m_r}{E_I} dx = \frac{1}{E_I} \left(\int \frac{\lambda x}{I} dx + \int \frac{\xi(\lambda - x)}{Y} dx \right)$,, , , , , , , , , , , , , , , , , , , ,
$D_{rr} = \int \frac{m_r m_r}{\bar{\epsilon} I} dx = \frac{1}{\bar{\epsilon} I} \left(\int_{-1}^{2\pi} \frac{q \xi}{I} dx + \int_{-1}^{q} \frac{(\lambda - x)^r}{I} dx \right)$	$x + \int \frac{x^r}{r} dx + \int \frac{1}{r} dx = \frac{1.75}{17EI}$
ي ي وال عور الله على المعادار الله الله على الله الله الله الله الله الله الله ال	(روزانس ۱۲ عادله و۱۲ مجول وس فر کسیم ته R عامر کسی آمد و
ل دانسی می دهو. دیالایا مال دا ما این که ن دیم کوده وی توان فی قر بواند برای	ازردی جور تارسکر : M= M. + فی از مورد اخر جود ا
[TY. TAE -94] [R] [-9Vr]	
$\frac{1}{rr} \left rh^{2} \right \cdot r\xi - 1\xi\xi \left R_{r} \right = -\frac{1}{FT} \left -197h \right - rh$	Y -tar
$\frac{1}{\Gamma E J} \begin{bmatrix} \Gamma Y \cdot & \Gamma \Lambda \xi & -99 \\ \Gamma \Lambda I^{2} & 1.7 \xi & -18 \xi \\ -99 & -18 \xi & \Gamma 9 \end{bmatrix} \begin{bmatrix} R_{1} \\ R_{2} \\ R_{3} \end{bmatrix} = -\frac{1}{E J} \begin{bmatrix} -9VI \\ -197\Lambda \\ 197\xi \end{bmatrix} \begin{bmatrix} -77VI \\ -197\Lambda \\ -197\Lambda \end{bmatrix}$	M \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
A X B	
$X = A^{-1}B = \{-1/2, 9/11, -1/20\}^{\dagger}$	محق برق تاتر ۱۱۵۷ دیجریمی

(عادات من هاری کا دخوش دامل های کند در می در در که در می ار کراهی مری کردان دکتاه در می در در کور در ما کردان دکتاه در می در در کور در ما کردان دکتاه در می کردان کردا

העניתנושי נות מות לות לב EI = ct س درون من المد الحقاليم Ma رو عام العوال المول المهد درنظر نبريم. دونجا ع النجاب ل نبي ، دوري كه دره تو كارنون ك. الم سانهان ندانسه دهم بردري سنه دم وكردي و خطه اي فرفس لوق دوره والدهوا معان - ايمودي عواري وهم - المرددي ab: $(13.-R_c)x + 1.R_c - 11...$; (2)() 1.. M=R-x-D-x-1.. : DM/OR=x ; .4x & D $\frac{\partial U_{\lambda}}{\partial R_{c}} = \Delta = 0 \Rightarrow \int \frac{M(\frac{\partial M}{\partial R_{c}})}{FT} dx = 0 \Rightarrow \frac{1}{FI} \left(\int \left[(1 \partial \cdot - R_{c}) \chi + 1 \cdot R_{c} - 11 \cdot \cdot \right] (1 - \alpha) d\alpha + \int \left(R_{c} \chi - \Delta \cdot \chi - 1 \cdot \cdot \right) \chi d\alpha \right) = 0$ در المراكبة المراكب ۲۲ - درملتس خص كولله ويرس مه مياني وي ما د له خور دونظ والد منهواي لاز مالك دوني فاط و المول مفورادد . وتن راي وال بوي ملاً M روائش المن والخرير م. P₁ T_A + P_r $\int_{\partial P_1}^{\partial U} = \theta_0 = 0 \qquad \int_{\partial P_2}^{\partial P_2} = \delta_0 ; \frac{\partial U}{\partial P_2} = \delta_0$ الاست كو مدير من مرسوف عامر مان المرائي -./1P1+./2Px-./1Pn ./1P1+./2Px+1,1Pp M=P1+(--/1P1+-/2Pr--/1Pr) x; 3H/ =1-1/1x; 3H/ =-/2x; 3H/ =--/1x bc: M = -Pr(1+2)+(-/1P1+12Pr+1,1Pr)x; OH/OPr=-/2x; OH/OPr=-/2x; OH/OPr=-/2x; OH/OPr=-/2x-1 (M (DW/Dbi) gx =- $\int \frac{EI}{EI} = - \left\{ \begin{array}{cccc} F_{1} & F_{2} & F_{3} & F_{4} \\ & F_{3} & F_{4} & F_{5} \end{array} \right\} \left\{ \begin{array}{cccc} F_{1} & F_{2} & F_{3} & F_{4} \\ F_{3} & F_{4} & F_{5} & F_{5} \end{array} \right\} \left\{ \begin{array}{cccc} F_{1} & F_{2} & F_{3} & F_{4} \\ F_{3} & F_{4} & F_{5} & F_{5} \end{array} \right\} \left\{ \begin{array}{cccc} F_{1} & F_{2} & F_{3} & F_{4} \\ F_{3} & F_{4} & F_{5} & F_{5} \end{array} \right\} \left\{ \begin{array}{cccc} F_{1} & F_{2} & F_{3} & F_{4} \\ F_{3} & F_{4} & F_{5} & F_{5} \end{array} \right\} \left\{ \begin{array}{cccc} F_{1} & F_{2} & F_{3} & F_{4} \\ F_{3} & F_{4} & F_{5} & F_{5} \end{array} \right\} \left\{ \begin{array}{cccc} F_{1} & F_{2} & F_{3} & F_{4} \\ F_{3} & F_{4} & F_{5} & F_{5} \end{array} \right\} \left\{ \begin{array}{cccc} F_{1} & F_{2} & F_{3} & F_{4} \\ F_{3} & F_{4} & F_{5} & F_{5} \end{array} \right\} \left\{ \begin{array}{cccc} F_{1} & F_{2} & F_{3} & F_{4} \\ F_{3} & F_{4} & F_{5} & F_{5} \end{array} \right\} \left\{ \begin{array}{cccc} F_{1} & F_{2} & F_{3} & F_{4} \\ F_{3} & F_{4} & F_{5} & F_{5} \end{array} \right\} \left\{ \begin{array}{cccc} F_{1} & F_{2} & F_{3} & F_{4} \\ F_{3} & F_{4} & F_{5} & F_{5} \end{array} \right\} \left\{ \begin{array}{cccc} F_{1} & F_{2} & F_{3} & F_{4} \\ F_{3} & F_{4} & F_{5} & F_{5} \end{array} \right\} \left\{ \begin{array}{cccc} F_{1} & F_{2} & F_{3} & F_{4} \\ F_{3} & F_{4} & F_{5} & F_{5} \end{array} \right\} \left\{ \begin{array}{cccc} F_{1} & F_{2} & F_{3} & F_{4} \\ F_{3} & F_{4} & F_{5} & F_{5} & F_{5} \end{array} \right\} \left\{ \begin{array}{cccc} F_{1} & F_{2} & F_{3} & F_{4} \\ F_{3} & F_{4} & F_{5} & F_{5} \end{array} \right\} \left\{ \begin{array}{cccc} F_{1} & F_{2} & F_{3} & F_{4} \\ F_{3} & F_{4} & F_{5} & F_{5} \end{array} \right\} \left\{ \begin{array}{cccc} F_{1} & F_{2} & F_{3} & F_{4} \\ F_{3} & F_{4} & F_{5} & F_{5} \end{array} \right\} \left\{ \begin{array}{cccc} F_{1} & F_{2} & F_{3} & F_{4} \\ F_{3} & F_{4} & F_{5} & F_{5} \end{array} \right\} \left\{ \begin{array}{cccc} F_{1} & F_{2} & F_{3} & F_{4} \\ F_{3} & F_{4} & F_{5} & F_{5} \end{array} \right\} \left\{ \begin{array}{cccc} F_{1} & F_{2} & F_{3} & F_{4} \\ F_{3} & F_{4} & F_{5} & F_{5} \end{array} \right\} \left\{ \begin{array}{cccc} F_{1} & F_{2} & F_{3} & F_{4} \\ F_{3} & F_{4} & F_{5} & F_{5} \end{array} \right\} \left\{ \begin{array}{cccc} F_{1} & F_{2} & F_{3} & F_{4} \\ F_{3} & F_{4} & F_{5} & F_{5} \end{array} \right\} \left\{ \begin{array}{cccc} F_{1} & F_{2} & F_{3} & F_{4} \\ F_{3} & F_{4} & F_{5} & F_{5} \end{array} \right\} \left\{ \begin{array}{cccc} F_{1} & F_{2} & F_{3} & F_{4} \\ F_{3} & F_{4} & F_{5} & F_{5} \end{array} \right\} \left\{ \begin{array}{cccc} F_{1} & F_{2} & F_{4} & F_{5} \\ F_{3} & F_{4} & F_{5} & F_{5} \end{array} \right\} \left\{ \begin{array}{cccc} F_{1} & F_{2} & F_{4} & F_{5} \\ F_{3} & F_{4} & F_{5} & F_{5} \end{array} \right$ J M(OM/OPr) dz = 01 -1, rr -11, 0 11 (Pr) 0. (2) 199, = - 187, Y = Ma

تأدر	مبرر	שמיפ	EI	М	ଉଜ/୭ ନ	એમ/એમ્ ન
ab	a:	هـ۵	EI	-4, 12+ 1. (1-1/12)+17P12	1/1 2	111
bd	С	Y- E	YEI	1,22+19++ P1 2+ 1 Pr 2	从 末	1/ ₁ x
dc	С	۰-۲	YEI	パンス + 大P12+ 5. Pr ス	¼ x	なな

دَّرَ بَرُورَ مِنْ بِالْمِرِينِ مِن مِن مِن مِن مِن مِن مِن مِن اللهِ بِهِ فَي عَرِينِ وَ وَمَن مَ مِن اللهِ م ١٢ برکس اکورد ، با جُنواری مِن ام که استاک ان در در الله استر قاری بالا :

$$\begin{cases} F_1 \cdot A^{\mu} P_1 + \mu P_1 = -\xi Y_1 \cdot A \\ P_1 = -\xi Y_2 \cdot A \end{cases} \Rightarrow P_1 = M_0 = -Y_2 \cdot Y_1 \cdot A ; P_1 = R_{cx} = -\xi Y_1 \cdot A$$

{m+r-rj=r	خویک دربردرد بخص می سبکورن EA درتای منطح تیس کنید.	-12
I IF TO I Right BURN		
(11-1-1 000000		

jes	l(m)	F	OFOP	OF/OPr	F(05/1) L	F(OF/OPr) l
ab	5	-·从 Pr	0	/人		1,29 Pr
ьс	٣	-14 pr - 1.	0	-14	•	BA(-14P+15)
cd	٤	- 1/1 Pr- E.	0	-·/ 人		Βγ(·/λΡγ +ε·)
ad	۳	P1-19Pr	١	19	+1" (P1-19P4)	-11x (P1-19Pr)
(Pq)	۵	Pr		1		2 Pr
ac	۵	Pr + 0.		1 -	•	2(b1+2·)

 $\frac{\partial U}{\partial P_{1}} = \Delta_{1} = \cdot \begin{cases} \frac{1}{F_{1}} \sum_{i=1}^{g} F(\partial_{i}^{g} P_{i}) I = \cdot \end{cases} \begin{cases} P(P_{1} - 1/9P_{1}) = \cdot P_{1} = -19; P_{1} = -19; P_{2} = -19; P_{3} = -19; P_{4} = -19; P_{5} = -19; P_{7} = -19;$

اگرداین منال جایاتی وقعی طانوال منوعی قران من مرس ۱۲ مر منام ۲۰ مرا و ۲۰ قراد دو و مناس عالم مردد - (ما درای مناس منالی ون $\frac{1}{r} \times r \times \Delta = \sum_{b_{2}}^{r} \frac{F^{r}l}{rEA} \Rightarrow 10 \Delta = \frac{\Delta \cdot \xi}{EA} \Rightarrow \Delta_{b_{2}} = \frac{rrq}{EA}$ در در الما در المحادث می منظور کود و المحادث من در دو المحادث من دو ا

۵۱- س ورس درود وی مواتو کارم کد. $I_{ab} = \lambda \cdot in^{\xi}$; $A_{bc} = A_{bd} = rin^{r}$ $F = rqxl^{r}$ resi

 $(r_{m+r})-(r_{j+c})=(r_{x}r_{+r})-(r_{x}\epsilon_{+r})=1$

مون كر رحمناس أكت ، نردى bd واحزان فهول لف خرد نظري ريم. $\frac{\partial U}{\partial p} = \cdot \Rightarrow \int \frac{M(\partial H/\partial p)}{EI} dx + \int \frac{F(\partial F/\partial p)}{EA} \ell = 0$

اری ای ماه ، A داد کرده الد ماری طوری M - ۱۲۰۲۹ - سند مایی خر ابن تحرت ما زانه ندار به سر سای مادی ما البيرت المكزار عاليه وه كادار كود

M=4,977-1.4977 ; 3M/3p=0

F = - 12, E - 1/114 P

ن محری : ماری الماری الماری

بيل برائع د١٢٠٠

 $+\frac{P \times I \times \Lambda_{1} + 9 \times I Y}{W} = 0$ \Rightarrow P = -9,92 K

المند الركار مرفي المروه و مرت ودور من العالمة و ملك والودولي من دورات والموالا:

 $t_{g\alpha} = \frac{Ry}{R_x} \Rightarrow R_y = R_x t_{g\alpha}, R_x = R_y c_{g\alpha}$

ישייני לי על נוילט ייעני שאיק די ניצטינאר תל עני

ترك براي عنو مله خوض مند A=1.in وده رساندراند خوار دون وتروزي قرري در ماه على ده من في دوس مند .

منت الأدعموجي لذائع.

 $\frac{\partial U}{\partial P_{i}} = - \Rightarrow \int \frac{H(\frac{\partial H}{\partial P_{i}})}{EI} dx + \int \frac{F(\frac{\partial F}{\partial P_{i}})}{EA} dx = 0 \quad (1)$ $\frac{\partial U}{\partial P_{i}} = - \Rightarrow \int \frac{H(\frac{\partial H}{\partial P_{i}})}{EI} dx + \int \frac{F(\frac{\partial F}{\partial P_{i}})}{EA} dx = 0 \quad (1)$ $\frac{\partial V}{\partial P_{i}} = - \Rightarrow \int \frac{H(\frac{\partial H}{\partial P_{i}})}{EI} dx + \int \frac{F(\frac{\partial F}{\partial P_{i}})}{EA} dx = 0 \quad (1)$

نعنى	(cm)	A(cm ^r)	F	of/or	oF/opr	F(OBBA) P/A	F(25/2 Pr) 8/A
6	1	r	Pi.	1	v	8 P1	o
dc	-1212_	Y	-1, 212 P1 +7, 218 Pr	-1, 212	1,818	1818 (PI-Pr)	1818(-P1+Pr)
de	1000	٣	Pı-Pr	1	-1	۳۳ ۳ (P1 - Pr)	rrr (-P1+ Pr)
(H)	1	Υ	Pr ·	•	l	0	2 Pr
fg	1	r	ro-Pr	۰	-1.	•	-9999, Y+ 444 Pr
f h	1212	٤	- Y2, Y2+1, E1E Pr		1, 212		-1812.+ VOL Pr

I KLLALI - INLAL - INLAL - LLY - LLY - LOYL

$$M = -P_{1}x; \partial M_{\partial P_{1}} = -x; \partial M_{\partial P_{1}} = 0$$

$$(1) \Rightarrow \frac{1}{E} \left(\int_{1}^{E} \frac{(-P_{1}x)(-x)}{Y''} dx + YYFYP_{1} - 1YEYP_{1} \right) = 0$$

$$(1) \Rightarrow \frac{1}{E} \left(\int_{1}^{E} \frac{(-P_{1}x)(-x)}{Y''} dx - 1YFYP_{1} + YYAAPY - YAFA) = 0$$

$$(2) \Rightarrow \frac{1}{E} \left(\int_{1}^{E} \frac{(-P_{1}x)(-x)}{Y''} dx - 1YFYP_{1} + YYAAPY - YAFA) = 0$$

$$(3) \Rightarrow \frac{1}{E} \left(\int_{1}^{E} \frac{(-P_{1}x)(-x)}{Y''} dx - 1YFYP_{1} + YYAAPY - YAFA) = 0$$

$$(4) \Rightarrow \frac{1}{E} \left(\int_{1}^{E} \frac{(-P_{1}x)(-x)}{Y''} dx - 1YFYP_{1} + YYAAPY - YAFA) = 0$$

$$(5) \Rightarrow \frac{1}{E} \left(\int_{1}^{E} \frac{(-P_{1}x)(-x)}{Y''} dx - 1YFYP_{1} + YYAAPY - YAFA) = 0$$

$$(7) \Rightarrow \frac{1}{E} \left(\int_{1}^{E} \frac{(-P_{1}x)(-x)}{Y''} dx - 1YFYP_{1} + YYAAPY - YAFA) = 0$$

$$(8) \Rightarrow \frac{1}{E} \left(\int_{1}^{E} \frac{(-P_{1}x)(-x)}{Y''} dx - 1YFYP_{1} + YYAAPY - YAFA) = 0$$

$$(9) \Rightarrow \frac{1}{E} \left(\int_{1}^{E} \frac{(-P_{1}x)(-x)}{Y''} dx - 1YFYP_{1} + YYAAPY - YAFA) = 0$$

$$(1) \Rightarrow \frac{1}{E} \left(\int_{1}^{E} \frac{(-P_{1}x)(-x)}{Y''} dx - 1YFYP_{1} + YYAAPY - YAFA) = 0$$

$$(1) \Rightarrow \frac{1}{E} \left(\int_{1}^{E} \frac{(-P_{1}x)(-x)}{Y''} dx - 1YFYP_{1} + YYAAPY - YAFA) = 0$$

$$(2) \Rightarrow \frac{1}{E} \left(\int_{1}^{E} \frac{(-P_{1}x)(-x)}{Y''} dx - 1YFYP_{1} + YYAAPY - YAFA) = 0$$

$$(3) \Rightarrow \frac{1}{E} \left(\int_{1}^{E} \frac{(-P_{1}x)(-x)}{Y''} dx - 1YFYP_{1} + YYAAPY - YAFA) = 0$$

$$(4) \Rightarrow \frac{1}{E} \left(\int_{1}^{E} \frac{(-P_{1}x)(-x)}{Y''} dx - 1YFYP_{1} + YYAAPY - YAFA) = 0$$

$$(4) \Rightarrow \frac{1}{E} \left(\int_{1}^{E} \frac{(-P_{1}x)(-x)}{Y''} dx - 1YFYP_{1} + YYAAPY - YAFA) = 0$$

$$(5) \Rightarrow \frac{1}{E} \left(\int_{1}^{E} \frac{(-P_{1}x)(-x)}{Y''} dx - 1YFYP_{1} + YYAAPY - YAFA) = 0$$

$$(5) \Rightarrow \frac{1}{E} \left(\int_{1}^{E} \frac{(-P_{1}x)(-x)}{Y''} dx - 1YFYP_{1} + YYAAPY - YAFA) = 0$$

$$(7) \Rightarrow \frac{1}{E} \left(\int_{1}^{E} \frac{(-P_{1}x)(-x)}{Y''} dx - 1YFYP_{1} + YYAAPY - YAFA) = 0$$

$$(7) \Rightarrow \frac{1}{E} \left(\int_{1}^{E} \frac{(-P_{1}x)(-x)}{Y''} dx - 1YFYP_{1} + YYAAPY - YAAPY - YAFA) = 0$$

$$(7) \Rightarrow \frac{1}{E} \left(\int_{1}^{E} \frac{(-P_{1}x)(-x)}{Y''} dx - 1YFYP_{1} + YAPY - YAAPY - YAPY -$$

ab: $EK = \frac{rEI}{r} = \frac{qEI}{q} = q$; $FEM_{ab} = -\frac{pl}{\Lambda} = -1...$; $FEM_{ba} = +\frac{pl}{\Lambda} = +1...$; $\psi = 0$ bc: $EK = \frac{EEI}{r^2} = \frac{\Lambda EI}{q} = \Lambda$; $FEM_{bc} = FEM_{cb} = 0$; $\psi = 0$ $\begin{cases} M_{ab} = r_{x}q \left(r\theta_{a} + \theta_{b} - r_{x} \cdot \right) - 1... \\ M_{ba} = r_{x}q \left(r\theta_{b} + \theta_{a} - r_{x} \cdot \right) + 1... \end{cases}$ bc $\begin{cases} M_{bc} = r_{x}\Lambda \left(r\theta_{c} + \theta_{b} - r_{x} \cdot \right) + 1... \\ M_{cb} = r_{x}\Lambda \left(r\theta_{c} + \theta_{b} - r_{x} \cdot \right) + 0... \end{cases}$

در و المرتبرل كريم كد الم المادون ولات من ول حموق عامنو و و ما مني ولا أعدوهم بماركني درن ولات والمرتب المراد الم والمرتب المرتبر والمرتب المرتبر والمرتبر والمرتبر

از این که مان روسای ۵ و می از انها صورد نوا ۱ این گردها از قردان ار صفر این که می کول مان مورد می ارات مادار می

باخیواری ۵ درد ماد کری اور ۱۳ و ۹۴ ملی ۱۳ میلی اور در در در اور این در از کری امن الهوا که برای مودهمه کرین نکر و بهت کی کان سوم دکرت بیمت کے کون جمہوات ماری کو در میرون عوار درم می لادم مارید اور این در کرنے ، درت کود درکت انت المهوج کرد و کا بود طرفه درای کرین در ک موری کمت (درونی ۵۰۰) از مادلات خور جمروی نر در ارت محمر جرفرد و ملی در این ۵۰۰ و ۲۰۰ و ۲۰ و

مادها و بروش میدان می کند. EI=de ىاقىھەرئىل ئىبر يامەر نەداردلى ائىسكىل مىائى دىمت دىجىدلات ۵، ، ى قى مائزار مادائى سي دنت الموس كذه على حرف تورهوكد . يون كل از فجرلات ١٥ الك دي ٥ كس مر ى درى دارى وكر سادىرى دلى مان موهم وكت. ab: EK= [] =]; FEM = FEM = •; Ψ= Δ = Ψ = (الماديم الما المراك المراح الماديم الماد しいいからかしていりなりなり $ab \begin{cases} M_{ab} = Yx \cdot I(Yx \cdot + \theta_b - YV_f) + \bullet \\ M_{ba} = Yx \cdot I(Y\theta_b + \bullet - YV_f) + \bullet \end{cases} bc: M_{bc} = Yx \cdot I(\theta_b - \bullet) + (-YX) - \frac{1}{Y}(YX) + \frac{1}{Y}X \bullet$ (وَوَالِمُ مُنْ مِنْ لِلَالِهِ يَا عَرِيحَ وَمَعَامِلَ وَلَهُ مِنْ وَمُولِلَ لِلْكُولِينَ فَيُولِكُ فَي مِلْكُولِينَ اللهِ عَلَيْهِ فَي مِلْكُولِينَ فِي مِنْ فَالْمُولِينَ فِي مِنْ فَالْمُولِينَ فِي مِلْكُولِينَ فِي مِنْ فَالْمُولِينَ فِي مُلْكُولِينَ فِي مِنْ فَالْمُولِينَ فِي فَالْمُولِينَ فِي فَالْمُ لِلْمُ فَلِينَا فِي مِنْ فَالْمُولِينَ فِي فَالْمُولِينَ فِي مِنْ فَالْمُولِينَ فِي مِنْ فِي مِنْ فَالْمُولِينَ فِي فِي فَالْمُولِينَ فِي مِنْ فَالْمُولِينَ فِي مِنْ فِي مِنْ فِي مِنْ فَالْمُولِينَ فِي فِي مِنْ فَالْمُولِينِ فِي فَالْمُولِينِ فِي مِنْ فِي مِنْ فَالْمِينِ فِي مِنْ فَالْمُولِينِ فِي مِنْ فَالْمُولِينِ فِي مِنْ فِي فَالْمُولِينِ فِي مِنْ فَالْمُولِينِ فِي مِنْ فَالْمُولِينِ فِي فِي مِنْ فَالْمُولِينِ فِي فَالْمُولِينِ فِي فَالْمُولِينِ فِي فِي فَالْمُولِينِ فِي فَالْمُولِينِ فِي فَالْمُولِينِ فِي فَالْمِنْ فِي فَالْمُولِينِ فِي فِي فِي فَالْمُولِينِ فِي فِي فِي فَالِمِنْ فِي فَالْمُولِينِ فِي فَالْمُولِينِ فِي فَالْمُولِينِ فِي فِي فَالْمُولِينِ فِي فَالْمُولِينِ فِي فَالْمُولِينِ فِي فَالْمِيلِينِ فِي فَالْمُولِينِ فِي فَالْمُولِينِ فِي فَالْمُولِينِ فَلِينِ فِي فَالْمُولِينِ فِي فَالْمُولِينِ فِي فَالْمُولِينِ فِي فَالْمُولِينِ فِي فَالْمُلْمُ وَلِي فَالْمُولِينِ فِي فَالْمُولِينِ فِي فَالْمُلِيلِينِ فِي فَالْمُولِينِ فِي فَالْمِنْ فِي فَالْمُلِينِ فِي فَالْمُلْمِ فَالْمُولِينِ فِي فَالْمُلْمُ فِي فَالْم be Hba + Hbc = + + V θb - 9 4 = 29,173 1 -> Jul + θb = 19,29; 4,=11,91 Sylv O > Yba IM = + Yab = - Mab+Mba Mba=-Mbc=-11,21 $V_{ab} = V_{ab} = V$ على بيز تدفيلا ذي كودوري لها تعدور الله المروري والمع المرواعي داري والمرك أودم من الله : (توص EI= a·xl. K-in (EI = 2 - x 1 - x - ft) (1'=11", 1"= 10, 8 mm) $Sh\psi_1 = \frac{Y1/41}{EI} = \frac{D}{1} \Rightarrow D = 1/A9Y$ mm * ما رو كني مرس ده المعيد ١٥٠ عربوال ١٥٠ مربول تن رات دار د مرافق كن در د مراكد . ورا مفورت تعبر بانته ک نه معورت دو برد المت . $\frac{10}{11} \times \frac{10}{11} \times \frac{10$ دو الان كريب اورت مرصى الارتحال على وين الادوا قرار في والناس ما والتي ما والتي ما والتي ما والتي الله الله ا (VOb - 4 41 = E9.78YA 1406-114 = -1. → H_{ab} = -1λδ/·λ Mba = - Mbc = La/. A "ΣM== = " (-1λω,λ) (کرازج ددرمای + 1. Rcy = = => Rcy = 4,89 K

۱۵ مورندس مرحال دارساه ف كرد ، وهم كرد ميرها و ۵ مريزال ۱ ما ۱۰۰۱ درهاف استر ترميس رياس در در ال ما اسما مياني تعروف من والعول تعالم على مع (DKI = T) جون دور وولدو مد FEM و المالية وولدو مد بر المراكب مع در المولاي مع المراكب مع المراكب من المراكب الم المراكب در التراكم كد درون عوم من المن الحر الدون ورا حدف من ورو ما - المام كالم كده الما ورواكم و الما كالمو كدور الاها عمودهدم وهم منور الأ حادان عرود وادر EI حرف كود اله براي كادلى عواره مندها والعرات في دارد كانم (ادي در EI) عرف كانم دع را الرامي عبورت بركاري يم عن الري توسي جود الهرات على المود. وتت كودورى اله واد مكوه و واز داص برائز المت مار كود. ab: EK = r; $\psi = \frac{\delta}{\delta} = r\psi$; $\theta_a = -\frac{1}{2} \cdot 1 \times \frac{EI}{I\Delta} = -\frac{7}{2} \cdot 999$ bc: $EK = 1 \cdot 3 \cdot \psi = \frac{1}{2} \times \frac{EI}{I\Delta} = \lambda_1 \lambda_1 \lambda_2 \lambda_3 \lambda_4 \lambda_5$ $\begin{array}{llll}
 & \begin{array}{lll}
 & \end{array}
 & \begin{array}{lll}
 & \begin{array}{lll}
 & \begin{array}{lll}
 & \end{array}
 & \begin{array}{lll}
 & \begin{array}{lll}
 & \end{array}
 & \begin{array}{lll}
 & \begin{array}{lll}
 & \end{array}
 & \begin{array}{lll}
 & \end{array}
 & \begin{array}{lll}
 & \end{array}
 & \begin{array}{lll}
 & \end{array}
 & \begin{array}{lll}
 & \begin{array}{lll}
 & \end{array}
 & \begin{array}{lll}
 & \end{array}
 & \begin{array}{lll}
 & \end{array}
 & \begin{array}{lll}
 & \end{array}
 & \end{array}
 & \begin{array}{lll}
 & \begin{array}{lll}
 & \end{array}
 & \end{array}
 & \begin{array}{lll}
 & \end{array}
 & \begin{array}{lll}
 & \end{array}
 & \end{array}
 & \begin{array}{lll}
 & \end{array}
 & \begin{array}{lll}
 & \end{array}
 & \end{array}
 & \begin{array}{lll}
 & \end{array}
 & \begin{array}{lll}
 & \end{array}
 & \begin{array}{lll}
 & \end{array}
 & \end{array}
 & \begin{array}{lll}
 & \end{array}
 & \end{array}
 & \begin{array}{lll}
 & \end{array}
 & \begin{array}{lll}
 & \end{array}
 & \begin{array}{lll}
 & \end{array}
 & \end{array}
 & \begin{array}{lll}
 & \end{array}
 & \begin{array}{lll}
 & \end{array}
 & \end{array}
 & \begin{array}{lll}
 & \end{array}
 & \begin{array}{lll}
 & \end{array}
 & \begin{array}{lll}
 & \end{array}
 & \end{array}
 & \begin{array}{lll}
 & \end{array}
 & \begin{array}{lll}
 & \end{array}
 & \begin{array}{lll}
 & \end{array}
 & \begin{array}{lll}
 & \end{array}
 & \end{array}
 & \begin{array}{lll}
 & \end{array}
 & \begin{array}{lll}
 & \end{array}
 & \end{array}
 & \begin{array}{lll}
 & \end{array}
 & \begin{array}{lll}
 & \end{array}
 & \end{array}
 & \begin{array}{l}
 & \end{array}
 & \end{array}
 & \begin{array}{lll}
 & \end{array}
 & \end{array}
 & \begin{array}{lll}
 & \end{array}
 & \end{array}
 & \begin{array}{lll}
 &$ وس كود مول من المس وكات ، كه كان مير ما مي بال إلى والكور والكور والله EI الحال المد والمع مراويان ما مع مواويان . معنی دیوه ی تورک ماتر کی محتی درانی مالد مالد من می المت رزیما ماتر کی محتی دام برس براورده ربه براورد و اراف مارد ایران در ماتر کی محتی درانی مالد مالد من می المت رزیما ماتر کی محتی دام برس براورده ربه براورد و ایران می مادر وهم كن بن إدر مدم جع في و دوره عن FEM عامن از بار را تواري هم . و تواسم مدواسي في تنيم دروس فجروات اعواد كسي ركوس وكوس ما

۲۴ - قام دوبرد دام روش كريس ـ دانت كيس كنرير است در کنم ، و و و مرت کند و درج من دادی در دانی ۲ ما توا هواکد . معنی در فوع ۱۳ = DKI = ۴ رتها وران در الرسطيم عا موتنوت موه والدنة دخيا كنير بينة وهرب في توكيم كالمم م كالى الم FEM درهانه cd وتركم ورور FEM في أوراكم الم ab: Ex = EI = 1.; FEM = -0, 17; FEH = 4, 25; Y = 1 = 140 = 194 bc: EK = $\frac{YEI}{5}$ = 12; FEM = FEM = ; $\psi = -\frac{cc'}{5} = -\frac{1/2\Delta}{5} = -\frac{9D}{5} = -9V$ cd: Ek = $\frac{EI}{a}$ = 9; FEM = 10; FEM = -10; $\psi = \frac{cc'}{a} = \frac{1,700}{a} = \frac{170}{51} = 17\psi$ دَتَ تَعَد در عالم بال ا ع الله على الله على المعتبي وردهانه cd المعتبي المعتبي وردهانه cd می از جرار بردی ۱۶ از والی سرالدالات دادا دری الم ، ۱۶ مروایر ۱۶- ترار داد درام . ab $\begin{cases} M_{ab} = Y_{x}I_{x}(Y_{x} + \theta_{b} - Y'(19 \psi_{i})) - \lambda_{i}YY \\ M_{ba} = Y_{x}I_{x}(Y_{a} + \theta_{b} - Y'(19 \psi_{i})) + Y_{i}\Sigma \end{cases}$ bc { M_c= rx12(rθc+θc-r(-9 Ψ1))+ . cd: Mod = rx4(Oc-1141)+1.-+ (-1.)++ Vdc IM = = > V = \frac{\xi - Mcd}{\alpha} : is V & V \dc s Vab Single O , is de Sylve D , is Sylve D (IY Ydc ار الجدائي سرمس الالاله على الله عنه مرائع من والمنادكي المرابي من والماركي الماري من المرابي من المرابي من المرابي ا در انتی کوه له دارد فرد (در مند من فرز بردی فری در مله ماه و محدد الله ۱۱ در ۱۲ علی مندارد فی کود) بوی خدف این فردها به حای در توال . . IF معدد تول در ۱۲ و ایروی و من به مادی دیا . IM = = > 1,777 Vab + Mab + 11,97 Vdc - 13x3,777-1-x4,77 - Ext (3,77+1,3) -1.x 7,77 = 0. $\Rightarrow M_{ab} = -\omega_{\gamma} \gamma$, $M_{ba} = -M_{bc} = -\gamma \gamma_{\lambda} \omega$; $M_{cb} = -M_{cd} = \gamma_{\lambda} \omega$

ر کرک عادات ترس انت عابالی انتی C دکمی a و ادبراله ۱۲ ولید ادولار وقت تود من وسی دکمت! منی اکر هوف از معادات ترب انت دو انس رد ناسن بدورم ، من زي سرك در در در الله دالات د ده نعه داين ركت كرهوف بانس عالمال ها وكت احجاكه لاش محتى فجرم عالسر جاياتي عا خواموركد وكرز بقر سان والتأثير عالى الخرامات . ab: $EK = \frac{EI}{\Delta} = \frac{xEI}{I_0} = r$; $FEM_{ab} = -r^a$; $FEM_{ba} = r^a$; $\psi = \frac{bb'}{\Delta} = \frac{0}{r^a} = \psi$, bc: $EK = \frac{rEI}{\Sigma} = \frac{\Delta EI}{I_0} = \Delta$; $FEM_{bc} = -\Sigma$; $FEM_{cb} = \Sigma$; $\psi = -\frac{b'b''}{\Sigma} = -\frac{0}{r^a} = -\psi$, (Pr = 1, D = 4,) ى تومد كور الا عان در ۵ و ع لولات و ٥ و ٥ كى المد ab: $M_{ha}^{m} = ixr(\theta_{b} - \psi_{i}) + r \cdot - \frac{1}{r}(-r \cdot) + \frac{1}{r}x \cdot$ bc: $M_{bc}^{m} = r_{x} \partial (\theta_{b} - (-\psi_{i})) + (-\xi_{i}) - \frac{1}{r} x \xi_{i} + \frac{1}{r} x$ تَن وَلَ وَدِينَ مِن اللَّهِ اللَّهِ وَلَى مُعَنِ وَلَكَ مُعَنِّونَ لَهُ عَنْ وَلَكُ مَا اللَّهِ لَا اللَّهِ وَلَهُ مَا اللَّهِ وَلَهُ اللَّهِ وَلَا مُعَنَّ وَلَا اللَّهِ وَلَهُ اللَّهِ وَلَا مُعَنَّا وَلَا لَا مُعَنَّا وَلَا اللَّهُ وَلَا مُعَنَّا وَلَا مُعَنَّا وَلَا مُعَنَّا وَلَا اللَّهُ وَلَا مُعَنَّا وَلَا مُعَنَّا وَلَا مُعَنَّا وَلَا مُعَنَّا وَلَا مُعَنَّا وَلَا مُعَنَّا مُعَنَّا وَلَا مُعْمِقًا وَلِي مُعْمِقًا وَلَا مُعْمِقًا وَلَا مُعْمِقًا وَلَا مُعْمِقًا وَلِي مُعْمِقًا وَلَا مُعْمِقًا وَلَا مُعْمِولُونَ مُعْمَ س براس كنم Cy=XI, من الله المركز أو نقط وتت كود ابن عان استرش و الله اكت و دروس من المراس و الله الله الله الله $\Rightarrow \begin{cases} 12\theta^{p} + 19h^{1} + 59 = -10. \\ \theta^{p} = -10, 19 \end{cases} \Rightarrow \begin{cases} h^{1} = 12, 97kk \\ \theta^{p} = -10, 19 \end{cases}$ کر حود کری برند. برای عالب م فروائم ازادل برای طه از کیس اور اصور کرده المتفاده مكيم ما على في ولات كايد المادد تفيورت ٣ ما له و١ فيول كادكولي ومولي الن كادات وكات بي (زيام طاه وال سي بعث عولى إوردهانه ab بركارم لم. $M_{ab} = 0 = Y \times Y \left(Y \theta_a + \theta_b - Y \psi_i \right) - Y \circ \Rightarrow \theta_a = \xi y_i y_a$ $\partial_{\alpha} = \frac{\xi V_{i} \dot{r} \dot{\omega}}{\xi I_{i}} = \frac{\xi V_{i} \dot{r} \dot{\omega}}{\xi I} ; \quad \theta_{b} = \frac{-1.75}{\xi I_{i}} = \frac{-1.75}{\xi I} ; \quad \psi_{i} = \frac{r \dot{\omega}_{i} \dot{\omega} \dot{\lambda} \dot{r} \dot{r}}{\xi I_{i}} = \frac{\dot{\Delta}}{\dot{r}} \Rightarrow \dot{\Delta} = \frac{\dot{V} \dot{\gamma} \dot{\omega}}{\xi I}$ رفت كور رواي ول م حمّة المت دوال الن عنورو (دوال كو، ط مور ب التروك * تَرَانَ : ساله ۲۲ ما ، فرض مر ط و فعلی در ع س کند .